Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(2): e14634, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38379112

RESUMO

Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/terapia , Acidente Vascular Cerebral/terapia , Terapia Trombolítica , Trombectomia/métodos , Inflamação , Isquemia Encefálica/terapia , Resultado do Tratamento
2.
CNS Neurosci Ther ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789643

RESUMO

BACKGROUND: Reperfusion therapy after ischemic stroke often causes brain microvascular injury. However, the underlying mechanisms are unclear. METHODS: Transcriptomic and proteomic analyses were performed on human cerebral microvascular endothelial cells following oxygen-glucose deprivation (OGD) or OGD plus recovery (OGD/R) to identify molecules and signaling pathways dysregulated by reperfusion. Major findings were further validated in a mouse model of cerebral ischemia and reperfusion. RESULTS: Transcriptomic analysis identified 390 differentially expressed genes (DEGs) between the OGD/R and OGD group. Pathway analysis indicated that these genes were mostly associated with inflammation, including the TNF signaling pathway, TGF-ß signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and NF-κB signaling pathway. Proteomic analysis identified 201 differentially expressed proteins (DEPs), which were primarily associated with extracellular matrix destruction and remodeling, impairment of endothelial transport function, and inflammatory responses. Six genes (DUSP1, JUNB, NFKBIA, NR4A1, SERPINE1, and THBS1) were upregulated by OGD/R at both the mRNA and protein levels. In mice with cerebral ischemia and reperfusion, brain TNF signaling pathway was activated by reperfusion, and inhibiting TNF-α with adalimumab significantly attenuated reperfusion-induced brain endothelial inflammation. In addition, the protein level of THBS1 was substantially upregulated upon reperfusion in brain endothelial cells and the peri-endothelial area in mice receiving cerebral ischemia. CONCLUSION: Our study reveals the key molecular signatures of brain endothelial reperfusion injury and provides potential therapeutic targets for the treatment of brain microvascular injury after reperfusion therapy in ischemic stroke.

3.
Pharmacol Res ; 190: 106720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893823

RESUMO

Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral Hemorrágico/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/metabolismo , Camundongos Knockout
4.
Pharmacol Res ; 187: 106641, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587812

RESUMO

Treatment of acute ischemic stroke with the recombinant tissue plasminogen activator (rtPA) is associated with increased blood-brain barrier (BBB) disruption and hemorrhagic transformation. Remote ischemic conditioning (RIC) has demonstrated neuroprotective effects against acute ischemic stroke. However, whether and how RIC regulates rtPA-associated BBB disruption remains unclear. Here, a rodent model of thromboembolic stroke followed by rtPA thrombolysis at different time points was performed with or without RIC. Brain infarction, neurological outcomes, BBB permeability, and intracerebral hemorrhage were assessed. The platelet-derived growth factor CC (PDGF-CC)/PDGFRα pathway in the brain tissue, PDGF-CC levels in the skeletal muscle and peripheral blood were also measured. Furthermore, impact of RIC on serum PDGF-CC levels were measured in healthy subjects and AIS patients. Our results showed that RIC substantially reduced BBB injury, intracerebral hemorrhage, cerebral infarction, and neurological deficits after stroke, even when rtPA was administrated in a delayed therapeutic time window. Mechanistically, RIC significantly decreased PDGFRα activation in ischemic brain tissue and reduced blood PDGF-CC levels, which partially resulted from PDGF-CC reduction in the skeletal muscle of RIC-applied hindlimbs and platelets. Intravenous or intraventricular recombinant PDGF-CC supplementation abolished RIC protective effects on BBB integrity. Moreover, similar changes of PDGF-CC in serum by RIC were also observed in healthy humans and acute ischemic stroke patients. Together, our study demonstrates that RIC can attenuate rtPA-aggravated BBB disruption after ischemic stroke via reducing the PDGF-CC/PDGFRα pathway and thus supports RIC as a potential approach for BBB disruption prevention or treatment following thrombolysis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Humanos , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Isquemia Encefálica/metabolismo
5.
Pharmacol Res ; 185: 106482, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195305

RESUMO

Reperfusion therapy with recombinant tissue plasminogen activator (rtPA) or mechanical thrombectomy is the most effective treatment for ischemic stroke. However, a large proportion of stroke patients remain severely disabled even after receiving timely reperfusion therapy. It remains unclear how reperfusion therapy results in secondary injury to the brain tissue and whether different reperfusion therapies induce differential effects. Here, we comprehensively determined the spatiotemporal dynamic changes in brain lipids during the acute phase after reperfusion in a mouse model of transient middle cerebral artery occlusion, with or without rtPA administration, using desorption electrospray ionization (DESI)-mass spectrometry imaging (MSI). Several phospholipids, sphingolipids, and neutral lipids were significantly altered both spatially and temporally at multiple timepoints after reperfusion, many of which were closely associated with expansion of the brain infarction territory and neurological function impairment. Furthermore, rtPA treatment significantly increased brain infarction, cerebral edema, and neurological deficits. Consistently, rtPA treatment caused extensive brain lipid alterations by facilitating brain-wide changes in lipid metabolism and inducing ischemic region-specific lipid changes. Overall, these results provide novel insights into how reperfusion therapy affects brain tissue and the outcome of stroke patients, and thus may facilitate the optimization of the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Ativador de Plasminogênio Tecidual , Lipidômica , Isquemia Encefálica/tratamento farmacológico , Reperfusão/métodos , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Encéfalo/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fibrinolíticos/uso terapêutico
6.
Front Pharmacol ; 13: 914537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668927

RESUMO

Stroke is one of the leading causes of mortality, and survivors experience serious neurological and motor behavioral deficiencies. Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur because of ischemia/reperfusion injury. Wnt signaling is an evolutionarily conserved signaling pathway that has been manifested to play a key role in embryo development and function maintenance in adults. Overactivation of Wnt signaling has previously been investigated in cancer-based research studies. Recently, abnormal Wnt signaling activity has been observed in ischemic stroke, which is accompanied by massive blood-brain barrier (BBB) disruption, neuronal apoptosis, and neuroinflammation within the central nervous system (CNS). Significant therapeutic effects were observed after reactivating the adynamic signaling activity of canonical Wnt signaling in different cell types. To better understand the therapeutic potential of Wnt as a novel target for stroke, we reviewed the role of Wnt signaling in the pathogenesis of stroke in different cell types, including endothelial cells, neurons, oligodendrocytes, and microglia. A comprehensive understanding of Wnt signaling among different cells may help to evaluate its potential value for the development of novel therapeutic strategies based on Wnt activation that can ameliorate complications and improve functional rehabilitation after ischemic stroke.

7.
Front Pharmacol ; 13: 904857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694256

RESUMO

Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases, accompanied by global alterations in metabolic profiles. In the past 10 years, over hundreds of metabolomics studies have been conducted to unravel metabolic changes in AD, which provides insight into the identification of potential biomarkers for diagnosis, treatment, and prognostic assessment. However, since different species may lead to systemic abnormalities in metabolomic profiles, it is urgently needed to perform a comparative metabolomics analysis between AD animal models and human patients. In this study, we integrated 78 metabolic profiles from public literatures, including 11 metabolomics studies in different AD mouse models and 67 metabolomics studies from AD patients. Metabolites and enrichment analysis were further conducted to reveal key metabolic pathways and metabolites in AD. We totally identified 14 key metabolites and 16 pathways that are both differentially significant in AD mouse models and patients. Moreover, we built a metabolite-target network to predict potential protein markers in AD. Finally, we validated HER2 and NDF2 as key protein markers in APP/PS1 mice. Overall, this study provides a comprehensive strategy for AD metabolomics research, contributing to understanding the pathological mechanism of AD.

8.
CNS Neurosci Ther ; 28(6): 862-872, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343071

RESUMO

BACKGROUND: Vasogenic cerebral edema resulting from blood-brain barrier (BBB) damage aggravates the devastating consequences of intracerebral hemorrhage (ICH). Although augmentation of endothelial Wnt/ß-catenin signaling substantially alleviates BBB breakdown in animals, no agents based on this mechanism are clinically available. Lithium is a medication used to treat bipolar mood disorders and can upregulate Wnt/ß-catenin signaling. METHODS: We evaluated the protective effect of lithium on the BBB in a mouse model of collagenase IV-induced ICH. Furthermore, we assessed the effect and dependency of lithium on Wnt/ß-catenin signaling in mice with endothelial deletion of the Wnt7 coactivator Gpr124. RESULTS: Lithium treatment (3 mmol/kg) significantly decreased the hematoma volume (11.15 ± 3.89 mm3 vs. 19.97 ± 3.20 mm3 in vehicle controls, p = 0.0016) and improved the neurological outcomes of mice following ICH. Importantly, lithium significantly increased the BBB integrity, as evidenced by reductions in the levels of brain edema (p = 0.0312), Evans blue leakage (p = 0.0261), and blood IgG extravasation (p = 0.0009) into brain tissue around the hematoma. Mechanistically, lithium upregulated the activity of endothelial Wnt/ß-catenin signaling in mice and increased the levels of tight junction proteins (occludin, claudin-5 and ZO-1). Furthermore, the protective effect of lithium on cerebral damage and BBB integrity was abolished in endothelial Gpr124 knockout mice, suggesting that its protective effect on BBB function was mainly dependent on Gpr124-mediated endothelial Wnt/ß-catenin signaling. CONCLUSION: Our findings indicate that lithium may serve as a therapeutic candidate for treating BBB breakdown and brain edema following ICH.


Assuntos
Barreira Hematoencefálica , Edema Encefálico , Animais , Barreira Hematoencefálica/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Lítio/metabolismo , Lítio/farmacologia , Lítio/uso terapêutico , Camundongos , Camundongos Knockout , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
9.
Front Immunol ; 12: 801985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966392

RESUMO

Ischemic stroke is caused by insufficient cerebrovascular blood and oxygen supply. It is a major contributor to death or disability worldwide and has become a heavy societal and clinical burden. To date, effective treatments for ischemic stroke are limited, and innovative therapeutic methods are urgently needed. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke, including neuronal survival, neuroinflammation, angiogenesis, glucose metabolism, and blood brain barrier regulation. In addition, the spatiotemporal expression profile of HIF-1α in the brain shifts with the progression of ischemic stroke; this has led to contradictory findings regarding its function in previous studies. Therefore, unveiling the Janus face of HIF-1α and its target genes in different type of cells and exploring the role of HIF-1α in inflammatory responses after ischemia is of great importance for revealing the pathogenesis and identifying new therapeutic targets for ischemic stroke. Herein, we provide a succinct overview of the current approaches targeting HIF-1α and summarize novel findings concerning HIF-1α regulation in different types of cells within neurovascular units, including neurons, endothelial cells, astrocytes, and microglia, during the different stages of ischemic stroke. The current representative translational approaches focused on neuroprotection by targeting HIF-1α are also discussed.


Assuntos
Encéfalo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/metabolismo , Animais , Humanos
10.
Stem Cell Res Ther ; 12(1): 385, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233739

RESUMO

BACKGROUND: The therapeutic efficacy of mesenchymal stem cells (MSCs) of different tissue origins on metabolic disorders can be varied in many ways but remains poorly defined. Here we report a comprehensive comparison of human MSCs derived from umbilical cord Wharton's jelly (UC-MSCs), dental pulp (PU-MSCs), and adipose tissue (AD-MSCs) on the treatment of glucose and lipid metabolic disorders in type II diabetic mice. METHODS: Fourteen-to-fifteen-week-old male C57BL/6 db/db mice were intravenously administered with human UC-MSCs, PU-MSCs, and AD-MSCs at various doses or vehicle control once every 2 weeks for 6 weeks. Metformin (MET) was given orally to animals in a separate group once a day at weeks 4 to 6 as a positive control. Body weight, blood glucose, and insulin levels were measured every week. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed every 2 weeks. All the animals were sacrificed at week 6 and the blood and liver tissues were collected for biochemical and histological examinations. RESULTS: UC-MSCs showed the strongest efficacy in reducing fasting glucose levels, increasing fasting insulin levels, and improving GTT and ITT in a dose-dependent manner, whereas PU-MSCs showed an intermediate efficacy and AD-MSCs showed the least efficacy on these parameters. Moreover, UC-MSCs also reduced the serum low-density lipoprotein cholesterol (LDL-C) levels with the most prominent potency and AD-MSCs had only very weak effect on LDL-C. In contrast, AD-MSCs substantially reduced the lipid content and histological lesion of liver and accompanying biomarkers of liver injury such as serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, whereas UC-MSCs and PU-MSCs displayed no or modest effects on these parameters, respectively. CONCLUSIONS: Taken together, our results demonstrated that MSCs of different tissue origins can confer substantially different therapeutic efficacy in ameliorating glucose and lipid metabolic disorders in type II diabetes. MSCs with different therapeutic characteristics could be selected according to the purpose of the treatment in the future clinical practice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cordão Umbilical
11.
Int Immunopharmacol ; 94: 107507, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33657523

RESUMO

Hemorrhagic transformation (HT) is a frequent complication of ischemic stroke after thrombolytic therapy and seriously affects the prognosis of stroke. Due to the limited therapeutic window and hemorrhagic complications, tissue plasminogen activator (t-PA) is underutilized in acute ischemic stroke. Currently, there are no clinically effective drugs to decrease the incidence of t-PA-induced HT. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that maintains oxygen homeostasis and mediates neuroinflammation under hypoxia. However, the effect of HIF-1 on t-PA-induced HT is not clear. The aim of this study was to investigate the role of HIF-1 in t-PA-induced HT by applying YC-1, an inhibitor of HIF-1. In the present study, we found that HIF-1 expression was significantly increased in ischemic brain tissue after delayed t-PA treatment and was mainly localized in neurons and endothelial cells. Inhibition of HIF-1 by YC-1 improved infarct volume and neurological deficits. YC-1 inhibited matrix metalloproteinase protein expression, increased tight junction protein expression, and ameliorated BBB disruption and the occurrence of HT. Furthermore, YC-1 suppressed the release of inflammatory factors, neutrophil infiltration and the activation of the HMGB1/TLR4/NF-κB signaling pathway. These results demonstrated that inhibition of HIF-1 could protect BBB integrity by suppressing HMGB1/TLR4/NF-κB-mediated neutrophil infiltration, thereby reducing the risk of t-PA-induced HT. Thus, HIF-1 may be a potential therapeutic target for t-PA-induced HT.


Assuntos
Isquemia Encefálica/imunologia , Hemorragia Cerebral/imunologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Acidente Vascular Cerebral/imunologia , Tromboembolia/imunologia , Ativador de Plasminogênio Tecidual , Animais , Células Endoteliais/efeitos dos fármacos , Proteína HMGB1/imunologia , Indazóis/farmacologia , Masculino , NF-kappa B/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ratos Sprague-Dawley , Receptor 4 Toll-Like/imunologia
12.
Neuropharmacology ; 186: 108474, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524408

RESUMO

Although upregulation of endothelial Wnt/ß-catenin signaling may be used to treat blood-brain barrier (BBB) breakdown caused by cerebral ischemia/reperfusion injury, no agents based on this mechanism are available clinically. Lithium, a medication used for treating bipolar mood disorders, upregulates Wnt/ß-catenin signaling, but whether lithium alleviates BBB breakdown after ischemic stroke by upregulating endothelial Wnt/ß-catenin signaling is unclear. Here, we evaluated the BBB-protective effect of lithium in adult mice with 1-h middle cerebral artery occlusion and 48-h reperfusion (MCAO/R) by determining neurological outcomes, BBB function and related molecular components. Furthermore, we assessed the effect and dependence of lithium on Wnt/ß-catenin signaling in brain microvascular endothelial cells in cell culture and in mice with conditional endothelial knockout of Wnt7 co-receptor Gpr124. Our data show that lithium treatment (3 mmol/kg) significantly decreased infarct volume (34.1 ± 1.8% versus 58.3 ± 2.8% in vehicle controls, P < 0.0001) and improved neurological outcomes of mice following MCAO/R. Importantly, lithium significantly increased BBB integrity shown by reduction of Evans blue leakage (by 45.7%, P = 0.0064) and blood IgG extravasation (by 65.8%, P < 0.0001) into infarcted brain tissue. Mechanistically, lithium upregulated the activity of endothelial Wnt/ß-catenin signaling in vivo and in vitro, increased the protein levels of tight junctions (Claudin-5 and ZO-1), and reduced MMP-9 expression. Furthermore, the protective effect of lithium on cerebral damage and BBB integrity was abolished in endothelial Gpr124 knockout mice, indicating the protection of lithium on BBB was mainly dependent on the Gpr124-mediated endothelial Wnt/ß-catenin signaling. Taken together, our findings indicate that lithium may serve as a therapeutic candidate for treating the BBB breakdown in the early stage of ischemic stroke following reperfusion therapy.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Cloreto de Lítio/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cloreto de Lítio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Traumatismo por Reperfusão/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
13.
Front Immunol ; 12: 784098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975872

RESUMO

Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur due to ischemia-induced cerebral pathology. Mounting evidence indicates that the robust recruitment of immune cells plays a central role in the acute stage of stroke. Infiltrating peripheral immune cells and resident microglia mediate neuronal cell death and blood-brain barrier disruption by releasing inflammation-associated molecules. Nevertheless, profound immunological effects in the context of the subacute and chronic recovery phase of stroke have received little attention. Early attempts to curtail the infiltration of immune cells were effective in mitigating brain injury in experimental stroke studies but failed to exert beneficial effects in clinical trials. Neural tissue damage repair processes include angiogenesis, neurogenesis, and synaptic remodeling, etc. Post-stroke inflammatory cells can adopt divergent phenotypes that influence the aforementioned biological processes in both endothelial and neural stem cells by either alleviating acute inflammatory responses or secreting a variety of growth factors, which are substantially involved in the process of angiogenesis and neurogenesis. To better understand the multiple roles of immune cells in neural tissue repair processes post stroke, we review what is known and unknown regarding the role of immune cells in angiogenesis, neurogenesis, and neuronal remodeling. A comprehensive understanding of these inflammatory mechanisms may help identify potential targets for the development of novel immunoregulatory therapeutic strategies that ameliorate complications and improve functional rehabilitation after stroke.


Assuntos
AVC Isquêmico/imunologia , Neovascularização Fisiológica/imunologia , Doenças Neuroinflamatórias/imunologia , Plasticidade Neuronal/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , AVC Isquêmico/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Microglia/imunologia , Microglia/metabolismo , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Doenças Neuroinflamatórias/patologia , Recuperação de Função Fisiológica/imunologia
14.
Biomed Res Int ; 2018: 8943210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850586

RESUMO

Tissue-type plasminogen activator (t-PA) remains the only approved therapy for acute ischemic stroke but has a restrictive treatment time window of 4.5 hr. Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of hemorrhagic transformation (HT) secondary to reperfusion. In this study, we sought to determine the effect of pinocembrin (PCB; a pleiotropic neuroprotective agent) on t-PA administration-induced BBB damage in a novel rat thromboembolic stroke model. By assessing the leakage of Evans blue into the ischemic hemisphere, we demonstrated that PCB pretreatment 5 min before t-PA administration significantly reduced BBB damage following 2 hr, 4 hr, 6 hr, and even 8 hr ischemia. Consistently, PCB pretreatment significantly decreased t-PA infusion-resulting brain edema and infarction volume and improved the behavioral outcomes following 6 hr ischemia. Mechanistically, PCB pretreatment inhibited the activation of MMP-2 and MMP-9 and degradation of tight junction proteins (TJPs) occludin and claudin-5 in the ischemic hemisphere. Moreover, PCB pretreatment significantly reduced phosphorylation of platelet-derived growth factor receptor α (PDGFRα) as compared with t-PA alone. In an in vitro BBB model, PCB decreased transendothelial permeability upon hypoxia/aglycemia through inhibiting PDGF-CC secretion. In conclusion, we demonstrated that PCB pretreatment shortly before t-PA infusion significantly protects BBB function and improves neurological outcomes following prolonged ischemia beyond the regular 4.5 hr t-PA time window. PCB pretreatment may represent a novel means of increasing the safety and the therapeutic time window of t-PA following ischemic stroke.


Assuntos
Barreira Hematoencefálica/patologia , Embolia/tratamento farmacológico , Flavanonas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Comportamento Animal , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Progressão da Doença , Embolia/complicações , Embolia/enzimologia , Embolia/patologia , Flavanonas/líquido cefalorraquidiano , Flavanonas/farmacologia , Humanos , Linfocinas/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fármacos Neuroprotetores/farmacologia , Permeabilidade , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos Sprague-Dawley , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia , Trombose/complicações , Trombose/enzimologia , Trombose/patologia , Proteínas de Junções Íntimas/metabolismo , Fatores de Tempo , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/farmacologia
15.
Eur J Pharmacol ; 786: 72-84, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27179990

RESUMO

The persistence of neurogenesis raises the idea that neurons produced by the resident or transplanted neural stem cells could replace the neurons lost from brain injury or neurodegenerative disease. Therefore, compounds or methods for promoting neuronal differentiation become the focus of neurodegenerative disease therapy research. Claulansine F (Clau F), a newly discovered carbazole alkaloid, has been showed to induce neuritogenesis in PC12 cells. Herein, we studied the effect of Clau F on neuronal differentiation of neural stem/progenitor cells (NS/PCs). The current study demonstrated that Clau F initiated neuronal differentiation with a significant increase of TuJ1-positive cells and TuJ1 protein levels. We also found that Clau F promoted the maturity and sustainability of neurons by increasing MAP2-positive cells and MAP2 protein levels. At the same time, Clau F significantly inhibited the proliferation of NS/PCs. The underlying mechanism of Clau F was preliminary explored. Clau F treatment resulted in a profound increase of phosphorylation of Akt and GSK-3ß, which led to GSK-3ß inhibition and subsequently the nuclear accumulation of ß-catenin. Further, the interaction between ß-catenin and p300 in the nucleus was enhanced and the transcription of p300/ß-catenin responsive genes were increased significantly (c-jun, fra-1) by Clau F. Importantly, the positive effect of Clau F on neuronal differentiation was abolished by Akti-1/2, a specific inhibitor of Akt-1/2 kinase, which indicated the involvement of Akt/GSK-3ß in Clau F-mediated neuronal differentiation. In conclusion, these data suggested that Clau F promoted neuronal differentiation through Akt/GSK-3ß/ß-catenin signaling pathway in NS/PCs.


Assuntos
Carbazóis/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos
16.
Pharmacol Res ; 107: 291-299, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27038532

RESUMO

The treatment of acute ischemic stroke (AIS) using thrombolysis with recombinant tissue-plasminogen activator (rtPA, alteplase) is limited by its narrow time window and the risk of hemorrhage. Recombinant plasminogen activator (rPA, reteplase) has been used clinically on coronary artery thrombosis and acute myocardial infarction. It is necessary to induce strokes experimentally as a means of validating the rPA timing on patients with AIS. However, current embolic models cannot mimic clinical situations well due to the embolus's composition of dried blood clots or artificial materials. In this paper, we used two novel rat thromboembolic models to determine the dosage-effect relationship and therapeutic time window of r-PA. Male rats were administered rPA or rtPA intravenously at 2-12h postischemia. Cerebral blood flow, behavioral outcomes and infarct volume within the same animal group were determined. Our results demonstrated that rPA (0.2 and 0.4mg/kg) or rtPA (0.2mg/kg) restored focal perfusion, reduced cerebral infarction, and improved behavioral outcomes at 2-4h postischemia. rPA but not rtPA significantly restored focal perfusion at 6h postischemia. However, delayed rPA-treatment neither decreased infarct volume nor improved the neurological disorder. Cerebral hemorrhage occurred at 6h postischemia detected by Evan's blue leakage and tissue hemoglobin content. Collectively, Thrombolysis with rPA may be beneficial in revascularization at an acceptable dosage of 0.2-0.4mg/kg within 6h after the cerebral infarct onset.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Acidente Vascular Cerebral/patologia , Tromboembolia/patologia
17.
J Neurol Sci ; 359(1-2): 275-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671127

RESUMO

Stroke is a major cause of death and disability worldwide. However, treatment options to date are very limited. To meet the need for validating the novel therapeutic approaches and understanding the physiopathology of the ischemic brain injury, experimental stroke models were critical for preclinical research. However, commonly used embolic stroke models are reluctant to mimic the clinical situation and not suitable for thrombolytic timing studies. In this paper, we established a standard method for producing a rat embolic stroke model with autologous thrombus formed within the common carotid artery (CCA) by constant galvanic stimulation. Then the thrombus was shattered and channeled into the origin of the MCA and small (lacunar) artery. To identify the success of MCA occlusion, regional cerebral blood flow was monitored, neurological deficits and infarct volumes were measured at 2, 4 and 6h postischemia. This model developed a predictable infarct volume (38.37 ± 2.88%) and gradually reduced blood flow (20% of preischemic baselines) within the middle cerebral artery (MCA) territory. The thrombus occluded in the MCA was able to be lysed by a tissue-type plasminogen activator (t-PA) within 4h postischemia. The techniques presented in this paper would help investigators to overcome technical problems for stroke research.


Assuntos
Doenças das Artérias Carótidas/complicações , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/etiologia , Análise de Variância , Animais , Infarto Encefálico/etiologia , Fibrinolíticos/uso terapêutico , Membro Anterior/fisiopatologia , Infarto da Artéria Cerebral Média/mortalidade , Infarto da Artéria Cerebral Média/terapia , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Equilíbrio Postural , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico
18.
J Ethnopharmacol ; 164: 293-300, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25571846

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Methyl salicylate-2-O-ß-d-lactoside (MSL) is one of the main active components isolated from Gaultheria yunnanensis, which is a traditional Chinese medicine used to treat arthritis and various aches and pains. Pharmacological researches showed that MSL had various effective activities in both in vivo and in vitro experiments. However, the pharmacokinetics features and oral bioavailability of MSL in primates were not studied up to now. AIM: To study the pharmacokinetics of different doses of MSL in rhesus monkeys and investigate the absolute bioavailability of MSL after oral administration. MATERIALS AND METHODS: Male and female rhesus monkeys were either orally administrated with MSL 200, 400 and 800 mg/kg or received an intravenous dose of 20mg/kg randomly. The levels of MSL and salicylic acid (SA) in plasma were simultaneous measured by a simple, sensitive and reproducible high performance liquid chromatography method. RESULTS: Mean peak plasma concentration values for groups treated with 200, 400 and 800 mg/kg doses ranged from 48.79 to 171.83 µg/mL after single-dose oral administration of MSL, and mean area under the concentration-time curve values ranged from 195.16 to 1107.76 µg/mL h. Poor linearity of the kinetics of SA after oral administration of MSL was observed in the regression analysis of the Cmax-dose plot (r(2)=0.812), CL-dose plot (r(2)=0.225) and AUC(0-t)-dose plot (r(2)=0.938). Absolute bioavailability of MSL was assessed to be 118.89 ± 57.50, 213.54 ± 58.98 and 168.72 ± 76.58%, respectively. CONCLUSIONS: Bioavailability of MSL after oral administration in rhesus monkeys was measured for the first time. Pharmacokinetics parameters did not appear to be dose proportional among the three oral doses of treatments, and MSL showed an apparent absolute bioavailability in excess of 100% in rhesus monkeys based on the present study. In addition, a rapid, sensitive and reliable HPLC method was established and demonstrated for the research of traditional Chinese medicine in this study.


Assuntos
Lactose/análogos & derivados , Salicilatos/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Feminino , Cinética , Lactose/sangue , Lactose/farmacocinética , Macaca mulatta , Masculino , Salicilatos/sangue
19.
Acta Pharmacol Sin ; 34(12): 1499-507, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096602

RESUMO

AIM: To study the effects of Claulansine F (Clau F), a carbazole alkaloid isolated from the stem of Clausena lansium (Lour) Skeels, on neuritogenesis of PC12 cells, and to elucidate the mechanism of action. METHODS: Neuritogenesis of PC12 cells was quantified under an inverted microscope. Expression of the neurite outgrowth marker GAP-43 was detected using immunofluorescence. GAP-43 transcription was measured using RT-PCR. Cell viability was evaluated with MTT assay. The levels of phosphor-ERK1/2, phosphor-CREB, phosphor-AKT and acetylate-p53 in the cells were examined using Western blotting analyses. RESULTS: Clau F (10-100 µmol/L) significantly increased the percentage of PC12 cells bearing neurites. Clau F markedly increased the expression of GAP-43 in the cells. The efficiency of Clau F (10 µmol/L) in increasing neuritogenesis and GAP-43 expression was comparable to that of nerve growth factor (50 ng/mL). In addition, Clau F completely blocked the proliferation of PC12 cells within 7 d of incubation, whereas it did not cause cell death in cultured rat cortical neurons. Treatment of PC12 cells with Clau F activated both ERK and AKT signaling pathways. Co-treatment of PC12 cells with the specific ERK inhibitor PD98059, but not the specific PI3K inhibitor LY294002, blocked Clau F-induced neuritogenesis and GAP-43 upregulation. CONCLUSION: Clau F promotes neuritogenesis in PC12 cells specifically via activation of the ERK signaling pathway.


Assuntos
Carbazóis/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neuritos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Neuritos/fisiologia , Células PC12 , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...